Benjamin Walter
math210
Assignment Markov_II due 12/31/2021 at 02:09pm EET
Problem 1. (1 point) METUNCC/Linear_Algebra/2x2-eig_def.pg
The matrix $\mathrm{A}=\left[\begin{array}{cc}-8 & -4 \\ -1 & -5\end{array}\right]$ has an eigenvalue $\lambda=-9$.
Find an eigenvector for this eigenvalue.
$\vec{v}=\left[\begin{array}{l}- \\ \hline\end{array}\right.$

Note: You should solve the following problem WITHOUT computing all eigenvalues.
The matrix $\mathrm{B}=\left[\begin{array}{rr}-2 & 2 \\ -1 & -5\end{array}\right]$ has an eigenvector $\vec{v}=\left[\begin{array}{r}-7 \\ 7\end{array}\right]$.
Find the eigenvalue for this eigenvector.
$\lambda=$
Problem 2. (1 point) METUNCC/Linear_Algebra/3x3-eig_def.pg
The matrix $\mathrm{A}=\left[\begin{array}{rrr}4 & 3 & 3 \\ -8 & -4 & -10 \\ -3 & -2 & -2\end{array}\right]$ has an eigenvalue $\lambda=-2$.
Find an eigenvector for this eigenvalue.
$\vec{v}=\left[\begin{array}{l}\square \\ \square\end{array}\right]$

Note: You should solve the following problem WITHOUT computing all eigenvalues.
The matrix $B=\left[\begin{array}{rrr}-6 & -4 & -2 \\ 3 & 5 & -6 \\ 2 & 3 & -3\end{array}\right]$ has an eigenvector $\vec{v}=\left[\begin{array}{r}2 \\ -2 \\ -1\end{array}\right]$.
Find the eigenvalue for this eigenvector.
$\lambda=$
Problem 3. (1 point) METUNCC/Linear_Algebra/3x3-eigenval_3.pg
Find the eigenvalues and eigenvectors of the matrix $\mathrm{A}=\left[\begin{array}{rrr}-1 & 3 & 5 \\ 0 & 2 & 0 \\ -3 & 0 & -9\end{array}\right]$
$\lambda_{1}=\longrightarrow, \vec{v}_{1}=\left[\begin{array}{l}- \\ -\end{array}\right]$
and
$\lambda_{2}=\longrightarrow, \vec{v}_{2}=\left[\begin{array}{l}- \\ -\end{array}\right]$
and
$\lambda_{3}=\longrightarrow, \vec{v}_{3}=\left[\begin{array}{l}- \\ -\end{array}\right]$

Problem 4. (1 point) METUNCC/Applied_Math/markov/Tn.pg
The matrix T has eigenvalues and eigenvectors:

- $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right], \quad$ with $\quad \lambda_{1}=1$.
$\begin{aligned} \bullet & \mathbf{v}_{2}\end{aligned}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \quad$ with $\quad \lambda_{2}=\frac{1}{2}$.

Give formulas for the following:
(A) $\quad \mathrm{T}^{n}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}\square \\ -\end{array}\right]$
(B) $\quad \mathrm{T}^{n}\left[\begin{array}{c}0 \\ -2 \\ -6\end{array}\right]=\left[\begin{array}{l}\square \\ -\end{array}\right]$
(C) $\quad \mathrm{T}^{n}\left(\left[\begin{array}{c}3 \\ 6 \\ -9\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]+\left[\begin{array}{c}0 \\ 4 \\ 12\end{array}\right]\right)=\left[\begin{array}{l}\square \\ \square\end{array}\right]$
(D) $\quad \mathrm{T}^{n}\left[\begin{array}{c}1 \\ -1 \\ -15\end{array}\right]=\left[\begin{array}{l}\square \\ \square\end{array}\right]$

