Benjamin Walter Assignment Markov_II due 12/31/2021 at 02:09pm EET

Problem 1. (1 point) METUNCC/Linear_Algebra/2x2-eig_def.pg The matrix $A = \begin{bmatrix} -8 & -4 \\ -1 & -5 \end{bmatrix}$ has an eigenvalue $\lambda = -9$. Find an eigenvector for this eigenvalue. $\vec{v} = \begin{bmatrix} -1 & -2 \\ -1 & -5 \end{bmatrix}$

Note: You should solve the following problem WITHOUT computing all eigenvalues.

The matrix $B = \begin{bmatrix} -2 & 2 \\ -1 & -5 \end{bmatrix}$ has an eigenvector $\vec{v} = \begin{bmatrix} -7 \\ 7 \end{bmatrix}$. Find the eigenvalue for this eigenvector. $\lambda = __$ **Problem 2.** (1 point) METUNCC/Linear_Algebra/3x3-eig_def.pg The matrix $A = \begin{bmatrix} 4 & 3 & 3 \\ -8 & -4 & -10 \\ -3 & -2 & -2 \end{bmatrix}$ has an eigenvalue $\lambda = -2$. Find an eigenvector for this eigenvalue. $\vec{v} = \begin{bmatrix} __\\ __\\ __\end{bmatrix}$

Note: You should solve the following problem WITHOUT computing all eigenvalues.

The matrix B = $\begin{bmatrix} -6 & -4 & -2 \\ 3 & 5 & -6 \\ 2 & 3 & -3 \end{bmatrix}$ has an eigenvector $\vec{v} = \begin{bmatrix} 2 \\ -2 \\ -1 \end{bmatrix}$. Find the eigenvalue for this eigenvector. $\lambda = __$ **Problem 3. (1 point)** METUNCC/Linear_Algebra/3x3-eigenval_3.pg

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} -1 & 3 & 5 \\ 0 & 2 & 0 \\ -3 & 0 & -9 \end{bmatrix}$

$$\lambda_{1} = \underline{\qquad}, \vec{v}_{1} = \begin{bmatrix} \underline{\qquad}\\ \underline{\qquad}\\ \underline{\qquad}\\ \end{bmatrix}$$

and
$$\lambda_{2} = \underline{\qquad}, \vec{v}_{2} = \begin{bmatrix} \underline{\qquad}\\ \underline{\qquad}\\ \\ \underline{\qquad}\\ \end{bmatrix}$$

and
$$\lambda_{3} = \underline{\qquad}, \vec{v}_{3} = \begin{bmatrix} \underline{\qquad}\\ \underline{\qquad}\\ \\ \underline{\qquad}\\ \end{bmatrix}$$

Problem 4. (1 point) METUNCC/Applied_Math/markov/Tn.pg

The matrix T has eigenvalues and eigenvectors: $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

•
$$\mathbf{v}_1 = \begin{bmatrix} 1\\ 2\\ -3 \end{bmatrix}$$
, with $\lambda_1 = 1$.
• $\mathbf{v}_2 = \begin{bmatrix} 0\\ 0\\ 1\\ 1\\ 3 \end{bmatrix}$, with $\lambda_2 = \frac{1}{2}$.
• $\mathbf{v}_3 = \begin{bmatrix} 0\\ 1\\ 3\\ 1 \end{bmatrix}$, with $\lambda_3 = \frac{2}{3}$.

Give formulas for the following:

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America